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Abstract. Irreducible representations of Brauer algebras are discussed in the non-standard
basis. A method for evaluating subduction coefficients (SDCs), i.e. the transformation
coefficients between standard and non-standard bases of Brauer algebras, is outlined. Non-
trivial SDCs of Dy (n) for f < 5 are derived. Racah coefficients of/Q and Sp(2m) can be
derived from subduction coefficients of Brauer algebbagn) by using the Schur—Weyl duality
relation betweerD, (n) and Qn) or Sp(2m).

1. Introduction

Brauer algebras [1,2D((n), which are similar to the group algebra of the symmetric
group Sy related to the decomposition gfrank tensors of the general linear groG. (n),

are the centralizer algebras of the orthogonal group)@r the sympletic group(2m)
whenn = —2m. More precisely, ifG is the orthogonal group @) or the sympletic group
Sp(2m), the corresponding centralizer algel#aG) are quotients of Brauer algebr&s (n)

and D (—2m), respectively [2, 3]. Hence, the duality relation betwd@nn) and Qn) or
Sp(2m) is the same as the Schur—Weyl duality relation betwgeand GL(n). Recently,
irreducible representations db,(n) in the standard basis, i.e. the basis adapted to the
chain Dy(n) D Dy_1(n) D --- D Dy(n), have been constructed by using the induced
representation and the linear equation method [4], and more elaborately by Leduc and Ram
using the so-called ribbon Hopf algebra approach [5].

On the other hand, Racah coefficients of classical Lie groups are of importance in many
physical problems, which is apparent from the work of Kramer [6], Moshinsky and@hac
[7], Hecht [8], Le Blanc and Hecht [9], Al&uskas [10], Judét al [11], and so on.

In this series of papers, we shall use the Schur—Weyl duality relation betiveen
and Qn) or Sp(2m) to derive Racah coefficients of (@ and Sp(2m) from subduction
coefficients of Ds(n). This group-algebraic approach for evaluating Racah coefficients is
similar to that used by Kramer [12] and Chehal [13] to derive Racah coefficients of the
unitary groupU (n) from subduction coefficients of the symmetric gragip

In section 2 we will briefly review the irreducible representations of Brauer algebra
D¢ (n) in the standard basis. Then the non-standard basis adapted to thelgiiain>
Dy, (n) x Dg,(n) is expanded in terms of the standard ones. The expansion coefficients
are called the subduction coefficients (SDCs), or the transformation coefficients between
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the standard and non-standard base®pfr). In section 3, we will present an effective
procedure for evaluating these SDCs. SDC table®pfn) for f < 5 will be given in
section 4, which are important in deriving Racah coefficients 6f)@nd Sp(2m).

2. Brauer algebra Dy (n) in the non-standard basis

D¢ (n) is defined algebraically by £2—2 generatorggs, g2, ..., gr-1, €1, €2, . .., er_1} With
the following relations:
8i&i+18i = &i+18i8i+1
8i& = 8j8i li—jl=2
€i8i = €

(1)

€i8i-1€; = €;.
Using the above-defined relations, we can obtain the following relations which are also
useful for our purposes:

eej =eje; |l_]|>2

e? = ne; (1b)

(& —D* & +1 =0.
It can be easily seen th&g1, go, ..., gr—1} generate a subalgebsg, i.e. Ds(n) D S;. In
the following, we always assume thatis an integer witth > f — 1. In this caseDy(n)
is semisimple. Irreducible representationsi®f(n) can be denoted by a Young diagram
with f, f =2, f —4,...,1 or O boxes. An irrep oD (n) with f — 2k boxes is denoted
as (] r—2. The branching rule oDs(n) | Dy_1(n) is

M2 = Bpyomlul (2)

where [u] runs through all diagrams obtained by removing or {f €ontains less tharnf
boxes) adding a box to.]. Hence, the basis vectors &f;(n) in the standard basis can be
denoted by

[A]p—2x Cr(n) [A]r—ox
[u] Cra1(n) [u]
: : = : (3)
[p]  Crpp1(n) [p]]
Doy Crpln) Yy

where p] is identical to the same irrep cfy_,, Y,{;] is a standard Young tableau, an
can be understood either as the Yamanouchi symbols or the indices of the basis vectors in
the so-called decreasing page order of the Yamanouchi symbols. Procedures for evaluating
matrix elements of;, ande; withi = 1,2, ..., f — 1 in the standard basis (3) have already
been given in [4] and [5]. It is obvious that (3) is identical to the standard basis vectors of
Sy whenk = 0. In [4] explicit expressions for matrix representationsgpfande; in the
standard basis were given fgr < 5. Higher-dimensional results can also be derived by
using the method given in [4] or by using Leduc and Ram’s formula in [5].

An irrep of Ds(n) is reducible with respect to its subalgebby, (n) x Dy, (n) with
fi+ f2 = f. The process of the reduction is denoted by

[M-2 4 Dp() x Dy (n) =Y {radad} (Ml [Ra])- 4

A2
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We call this orthogonal subduced baglg(n) O Dy, (n) x Dy, (n) the non-standard basis of
D¢ (n). The basis vectors of (4) are denoted by
[)L] _ ‘C[)\l] [)\2]> (5)
o1 02

where p;lpi, i = 1,2, can be understood as labels for the standard basi3;@#), and
Dy, (n), respectively, given by 3k = 1,2,..., {A1221} is the multiplicity label needed in
the reduction (4).

In order to determine matrix representationspf(n) in the non-standard basis (5), we
can expand the non-standard basis in terms of the standard ones given by (3):

A A Ao Ao A A
’[A] t[A4] [2]>=Z [A]f 2k><[]f2k t[A4] [2]>. )
P1 P2 ) P 1Y L1 P2
The expansion coefficient is called the]f{_» | [A1] x [A2] SDC, or the transformation
coefficient between the standard and non-standard basbg(@). The SDCs satisfy the
following unitarity conditions:

Wz |tlral [A2d\ [z [elha] [2d\ _ 5
,\22,,2:,< 1Y o1 02 >< ol 01 02 >— Spp (78)
Xp:<m£_2k rEO/\ll] [2z]><[x12_2k ffﬁl] [ﬁ2]>=%,zapzpé5”“ )

Once the SDCs are determined, the matrix elem@nr¢ D, (n) in the non-standard basis
can easily be obtained with the results of those in the standard basis given in [4] and [5].

3. Evaluation of the SDCs

In [14, 15] we have already justified that the so-called linear equation method is effective
in deriving SDCs as well as induction coefficients (IDCs) of Hecke algebras. This method
can also be used to derive SDCsf (n).

Firstly, we assume thag]_, 82,5 8f-11€1,€2, ..., Efl_]_}, and{gfl+1, 842> -5 8fF 1y
efn+1, €42, - - ., ef—1} are the generators ddy, (n), and Dy, (n), respectively.

By applying Q; = g ore; withi = 1,2,...,fi—1 and Q; = g; or e¢; with
j=f+1 fi+2,...,f—1to (6), and then multiplying the results from the left with

<[)~]f2k
yol
we get two sets of linear equations
N, [ [y—ae | Tlda] [A2] [)\]f | T[da]  [A2]
Z(Q»plm( p oL > Z(Q) < o p2> (8)
Z(QJ fl)P202<[A]f % T[M] [K2]> Z(Qf <[)»]f 2% TE))»lll [2§]> (80)

2
where (Qy),, are matrix elements of); in the corresponding standard basis. Linear
relations or a part of the so-called intertwining relations among SDCs giverjra(® (&)
together with the unitarity condition (7) are sufficient in solving these SDCs. Using these
relations, we can obtain all SDCs for the given irreps [A1] and o] when 1] | [A1] x[22]
is multiplicity-free. In the multiplicity case, (8) gives linearly independent relations for the
fixed multiplicity label. These relations are also sufficient in solving the SDCs with the fixed
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multiplicity label. However, the same relations hold for any other multiplicity labels. In
order to resolve the multiplicity ambiguity, the SDCs with different multiplicity labels can

be chosen to be orthogonal to each other. In this case the solution to the SDCs is not unique
and depends on the phase convention. For example, SDOg(0§ | D3(n) x Dz(n) for

the reduction [321], [21] x [21] have already been given in [14] with= 1 because SDCs

for irreps of Dy (n) with exactly f boxes are identical to those of symmetric grodps In

this paper, we will only derive SDCs @b, (n) for the irreps withk # 0 and f < 5 because

k = 0 SDCs are the same as thoseSef which aren-independent and have already been
tabulated in [13]. In the following, we give an example to show how this method works.

Example Derive SDC< [i] ‘ [1 [2§]> of D4(n) | D1 x D3, where pp] = [1], [21], or
[31.

First, we rewrite (6) for these cases explicitly as

[ [\ _ < [ [\ _ <~

[2] [0] > — ;ai“) '[2] [2]> — L bi|l>
1 [\ _ <& 1w\,

[2] [12]>—;c,-|z> ‘[2] [3]>—;d,-|z> )
1 1\, 1 1\, .

[2] [2111>—;f,|z> ‘[2] [21]2>_;h,|,>

where
[2]> (2] > (2] >
1) = 2\ = 3) =
b=l 2= 21y, 9 =1 211,
[2] [2] [2] (10)
14) = [1]> 5) = [1]> 16) = [1]>
(2] [17] [0]
anda;, b;, ..., h; are the corresponding SDCs.
Table 1. D3 D D1 x D».
D3\Dy x Dz [1][0] [1] [2] (112
mer R
[1] 2] o gt s
[1][17 wt -2 -3

Table 2. D4 D D3 x D».

Da\D2x Dz [2][2] [1%][1?] [0][0]

[0] [1] [2] 1
(0] [1] [17] 1
[0] [1] [0] 1
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Table 3. D4 D D2 x D>.
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DA\Dy x D2 [17][2] [17] [12] [0] [2]

[2] [21]2 2(’1,,__21) 2(,,’Z_1>

2] [1] [17] o =y

2] [1] [0] 1

DDy x D2 [2][2] [2] [12] [2] [0]

(2] [3] e Eo ) s
[2] [21]1 e o -/l
[2] [1] [2] Z((r,nt—“z))((r'n:?) _\/2(n+,21)2(n—1) \/(n+2)2(n—1)
DA\Dy x Dz [2][17] 2] [2] [0][13
[12] [1] [2] o —J 2

[12] [21]1 2(,,”,1) \/ 231;,21)

[12] [1] [0] 1

D\Dy x Dy [12][17] 117 [2] [12] [0]
[17] [17] -3 E 5
[12] [21]; a2 e R
nA@ns /A L o I

Applying g2, e2 to (9), and using (B) and (&) with the results of matrix representation

in the standard basis given in [14], we obtain

_ n _ 2
BV 2" TN a—Dr+2™
0

(11a)
1= ar = a3 =
bg = — %m bs = — /%m b3 = ~/3b; (11b)
c6 = — 2(:4:21) Ca s = —\/Ec;; c1=0 co = —/3c3 (11¢)
ds = — %@ ds = '(lr(l”fz)zg di  ds=+/3ds (11d)
e R T I ENC T (11¢)
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Table 4. Ds D D3 x D3.
Ds\D2 x D3 [0] [19] [12] 13 2113 [12] [21]1 [17] [21]2
[2%] [1] [1] [0] 1
(23] [1] [1] [2] =5
-3 (n=3)(n+2) (n=3)(n+2)
(1] [17] [1] [17] D Vi =
[1%] [12] [21]1 Vi ly
31 112 (n+2)(n—3) (n—42(n—3) (n—3)(n+2)?
(1°1 [17 [21]2 n-Dn=2 VYV em-2n-12  V 18n-2n-172
3 2 3 2(n=3) (n—3)(n+2) (n=3)(n+2)
[1°] [1] [27] Y, 9(2—2) 3(,:’_2)&_1) 9(nn—2)(nn—1)
1 2
[13] [14 s V. 3(r:z+—l)
[13] [211]1 v/ ﬁ
3 (n+2) 2 2(n—4)2
[17] [211]2 93;22) 3m—2)(n—1) 9(117’12)(1171)
2 4 (n—4)2
[13] [211]5 - 1(&":_)2) 32— —V S0-26=T
Ds\D2 x D3 [2] [21]1 [2] [21]2 [17] [1] 12 [17] [1]2 [17] [1]o
[13] [12] [1] [0]
[13] [12] [1] [2] “Jen  eeD
1 2 2
[1%] [17] [1] [12] e e -/t

(1] [17] [21]1
(1% [27] [21]2
(1% [27] [2%]
(2% [14]

(1°] [211]s

n—2 n2
6(n—1)(n—2)

_ [21n=3)
3n—2)

n+2 (n—4)2 2(n2—4)
3(n—-1)2(n-2) 3n(n—2)(n—1)2 3n(n-1)
_ 2 _ 2(n+2) n—2
3n—-1)(n—2) n(n—1)(n—2) 3

n—3
2(n-1)

n+2

[1°] [211], R N e
[19] [211)s Ao LT N s [T
2n—-1) n
he= | h hs=—|——h hy = —/3h3. 1
6 (n T 2) 4 5 4 2 3 ( ]-f)
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Table 5. Ds D Dy x Ds.
Ds\Dz x D3 [0] [3] [2] [3] [12][3] [17] [21]; [17] [21]2

BI2I[0 1
(31121 (2] [2]
(31 [2] [1] [27]

(3] [2] [21]1

(n—2)(n+1)(n+6)
3(n—1)(n+2)?

(n+1)(n+6)
9(n+2)(n—1)

n+1
vV 30-1)

[ n=2
6(n—1)

2(n—1)

[3] (2] [21]2 - Jats
[31 21 [3] J A2 huin

[3] [4] Vearisers

[3] [31]2 V iz

[3] 3112 ot

[3] [31]s 152 NEZ=

Ds\Dz x D3 [2] [21]x [2] [21], [2] [1] 2 [2] [412 [2] [1]o
[3] [2] [1] [0]

BIRAMER -Jadrd  ~Visear  —amew eBeD ~ @D
[3] [2] [1] [12]

Bl -/ = so 7 Vmbear e

(31 [2] [21]2

_ [ na—2m+D (1=2)(n+1)(n+4) 2(n1+4) 2(n—2)2 _ [ ntd
(31 [2] [3] \/ 9(n+2)(n—D)(n+4) 3n(n+2)(n—1) \/ 3n(n+2)(n—1) \/ 3(n+2)2(n—1)(n+4) \/ 3(n+2)
(n—2)(n+6) / (n+1)(n+6)
[3] [4] 35171)514»4) Z(H’Lnl)(n+2)(n+2)
4 2(n—2)(n+1) (n—=2)(n+1)
31 311 v 9(n"—1) V -1 _\/ ril.’:n(n—nl) - 63:-1)3&2)
2n 2 (n=2)(n+1) (n—2)(n+1)
[3] [31]2 vV 9m—1) TV 3D nSn(nfl) - 3(7:—1)(:+2)
[3] [31]3
Applying g3, e3 to thed; equation in (9), we get
8
n+2 2n—1)
d=|—"d, di= | = da. (12a)
3n—2) 3n+4)
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Table 6. Ds D D1 x Dg.
Ds\D1 x Dy [1] [12]ag0 (1] [12) 2 (][22 (1] [12)21), (1] [12)211,
@IpEe oDy . ol JarZe s
1312 [ n? /ot =" Vatde  Vasew  —meee
LA p -2 y——— Y -
[1° (17 (211 s Sl mdem e
[1°] [2°] [21] ey D —mhen —wen
[1% (22 (23] e ~ oD
[ [211); s e
[19] [211], LD s
[19] [211]s LG
[1%] [14]
Ds\Dix Dy [1] [12s [1] [14] 211 [1][211) [1] [211]s
R E B B I L Y xe L x e
WIIAW0YT Voo Ve T B N = o
R TFG TR JE—— 13 VR jecen feaed
[1%] [12] [21], —\/ 6(,1,'&3,2)2 8((’:17—31?)(():1+—22)) V W@Sw o\ o "5 oD
LPI0ARY: [ miis Ve Joedm 23wy -3/ ARr

(1°1 117 (1%
[1°] [211]s
(1] [211];
(%] [211]s

(1% [1%]

_ 1 n—3
3n—2) 12(n—2)
(n+2)(n—3) \/n+2 1
6(n—2)2 8(n—2) 2(n—2)
_ [m+2@m=3 _ \/ n+2 V3
18(n—2)2 24(n—2) 2(n—-2)
(n+2)(n—3) \/ n+2
36(n—2)2 48(n—2)
3(n—3) 1
4(n—2) 4

V2(n—=3)(n+2)

J(n=3)(n+2)

3(n—2)

1
2V/3(n—2)

_1
6(n—2)

e
3(n—-2)

6(n—2)

_ 31-10
V24(n-2)

31—10
J72(n—2)

_ 3n-10
12-2)

3(n+2)

16(n—2)

Using (1X), (122) and the normalization condition in (7), we obtain

dy =&

(n—2)2(n+4)
6(n — (n + 2)2°

(12)
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Table 7. Ds D D1 x Dag.
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Ds\D1 x Dy [1] 2o [1] [2] g2 [1] [2] 22 [11 [2]3 [1] [2] 213,

S e RNy e e N e =
BRI 5 -ty ~wtfm sy m
B2 —; 2n<n171> B 2n2((nn—_12>)(i+2> - 3n2((r::42))(i+2) v #,.31)

(31 [2] [21]1 Y 13172’1152) _\/ 12<:i(1n>;(i)+2) \/ 18,12(;142)7(3?1)(”2) N 6%n111>

(31 [2] [21]2 1(21:12;2 _\/ 4(n’1—21€;l27(5:—2) an(n+gl’l)?'lzli)(n+2) - 2«/%(7:1—1)

2 n
12 3] S,

(31 [4]

(n—2)? _ [ 20t (n-2)
3n(n+2)(n+4) 9n2(n—1)(n+2)
3(n+1)(n+2)(n+6)
4-n(n+4)2

(3] [31]1 _ (nsz—l;l()éﬁ)n 8@354)

[3] [31]s _ ("ezn_zfi(ﬁf) _ 2::/25;1
Ds\D1x Ds [1] [2]pa,  [1] [31]1 [1] [31] [1] [31] [1] [4]

BN (e s R (e

2 -2 (n+DH(n—2) (n+H(n—2
BRMLY o | s V ity

_ [ +H(n—=2) [ (n+1)(n+6)
4n(n—1) 8(n+4)(n—1)

BRMO -/ /" he? o2

\/(n+1>(n—2> _ [atDH+6)
02 dn(n+4

O e = e = oD St Dne)
BERY: s SRS VRee e /SN
[31 [2] [3] - \/ 5 g;:ﬂ;;(fi) \/2(:1—32:32()”4) m%?
[3] 14] yE = o=z

(3] [31]1 3tz 5 &20i0
BlEL, -V we 2 e T
e e S s i e

Hence, all thej; are known. Similarly, using (k) and the normalization condition for the
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Table 8. Ds D D3 x D».

Ds\D3 x D [1]0 [17] [1]2 [17] [1];2 [19] [21]1 [2] [21]; [2]

(23] [1%] [1] [0] 1

[13] 121 [1] [2] 1

131117 1113 1

[13] [17] [21]1 _ a1

[13] [12] [21]2 =
[1%] [211]y =3

[13] [211]2 -3
[13] [211]s

1% [12] [13]

[13] [14]

Ds\D3 x D [21]: [17] [21]2 [17] (1% [2] [1° (27 (2% [0]

(1% [12] [1] [O]
(1] [17] 1] [2]
(1% [27] [1] [17]

(1% [17] [21] )
(1% [17] [21]2 s
[1%] [211]s i
(1% [211] 11

3 (n—6)2 2 3(n—=3)(n+2)
[17] [211]s — -2 —\/rﬁz) -2
3 2 3 (n—3)(n+2) -3 3
[1% [12] 19 JE2d s
3 4 3(n+2) 3 -3
[1%] [14 NS 3 =

a;, we get

2)(n—1
aa=ny "IN (120)

where& andn are overall phase factors which will be given in section 4. According to
our phase conventiot§, andn are all taken to ber1. Finally, applyinggs andes to other
equations in (9), we derive all the SDCs of this case. The results are listed in table 10.

4. SDCs ofD¢(n)

In this section, we list some SDC tables derived by using the method outlined in the above
section. Firstly, the following SDCs faby.1(n) D Dy(n) x D1(n) are trivial:

G o [l [0
<p ‘m, - >— 5 o (13)

Secondly, all SDC tables of symmetric grouf)s given in [13] are also the SDCs of
D¢ (n) for the Df(n) irreps s with k = 0. Hence, we will not re-tabulate them here.
Other non-trivial SDCs ofD(n) derived by using our method are listed in tables 1-11.
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Table 9. Ds D D3 x D».

Ds\D3 x D2 [1]0 [2] [1]2 2] [1]42 [2] [21]1 [2] [21]2 [2]
BIR[0o  1

[3] [2] [1] [2] 1

[3] [2] [1] [12] L

[3] [2] 2111 JE

[3] [2] [21]2 =
[3] 311 =

[3] 3113 =
[3] 3111

[3] [2] [3]

[3] [4]

Ds\D3x Dz [21h[17]  [212[17  [3][0] [3] [2] [3] [1 2]
[3] [2] [1] [0]

[3] [2] [1] [2]

3] [2] [1] [12]

[3] [2] [21]1 =

(3] [2] 2112 _

[3] 311 P

[3] [31]3 P

[3] [31]1 _ 3(n_fz§n+1) \/(n_‘_?nw \/%
[3112] [3] j;z'nﬁ) % B \/W
- CERL 5

Table 10. D4 D D1 x Ds.

Ds\D1 x D3 [1] [1]o [11 [1]2 (112 [1][3] [1] [[21]1 [1] [21]>
1 _ (n—2)2 1 _ n+4 n—2 n—2
(2] [1]o n 202(n—1)(n+2) 2n(n—1) V 3042 6(n—1) 2(n=1)
[2] [1] _ [ (=DH(n+2) (n—2)2 n+2 (1—2)2(n+4) _\/ (n—2)3 _ n2—4
2 Vo 22 20—Dn(n+2) An(n—1)2 6(1+2)2(n—1) 12(n+2)(n—1)2 20—1)
[2] [1] _ [n=1 _ [ w22 o _\/ n(n+4) \/ n(n—2) _ J/u=2)
12 2 ntD(n-12  20-D 6 +2)(1—1) 12(1-1)2 2n=1)
[2] [3] 2(n+4n? n—2 2(n+4)(n—2)
3(n-1)(n+2)2 3(n+2) -1 (n+2)
2] [21] _ (n—2)n? —/3n(n—=2) (n—2)(n+4) 2n-1 V3
1 V 2a-12m+2  4n-12 IB-D(nTd  6(n—1) 20~
_ (n—2)n? (n—2)n (n—2)(n+4) -1 _ 1
(21 [21]2 \/ 20-12052  V dn-12 V8n-Dwtd (=D 26T

The phase convention used for the SDCI®%in) is
[A] ‘ [14] [)»2]>

Al 0 14

< o (2] p > (14)

p=min

1 p2
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Table 11. D4 D D1 x Ds.

Di\D1 x D3 [1] [1]o [1] [1]2 [1] [1]42 113 [1] [[21]1 [1] [21]2

2 1 2 1 —2 2_4 2_4
177 o - Ve  TmeT Vi V zo-D ~V&D

2 (=D (n+2) -2 +2 [ n2-a [“n=2)3 (?—4) (n+2)
(17 [2]2 22 2n’En71) 4;18171)’Z 6:(»171) “V a(n-1)2 T T 12im-1)2

[12] [1] 2 n=l —ynntd) - _ =2 24 [ n?-a_
1 2n 2n(n—1) 2(n-1) 6(n—1) 2(n—1) 12(n—1)2

[12] [13] 2(n—2) 1 2(n+2)

3n—1) 3 9(n-1)

2 J=2n _ [ 3n2-4 n+2 1 215
(17 [21]1 2(=1) 2n-12 | B@-D 2(—T) 2J/3(n-1)
2 V3n(n—-2) n2—4 n+2 V3 2n—5
[17] [21]2 2(n—1) 12(n1—1)2 Ty 18n—-1) 2-1) )

wherep = min means taking the index as small as possible. The ordering of the ingex

is specified as follows. In the reductiddy (n) | D;_1(n) with irrep [A] | [u], we always
regardp = [x]p’, wherep’ represents other indices in order to label irrepot 1(n), as
smallest if [x] coincides with the same irrep ¢f. The same sub-ordering is then taken as
that for symmetric groups given by [13] and [14]. For example, the basis vectdpg(aj

irrep [2] given in (10) are expressed in this ordering. Once the absolute phase is fixed, the
relative phase among SDCs is determined uniquely by our linear equation method.

5. Conclusion

In this paper, the non-standard basis for Brauer algebyas) is discussed, and the method
for evaluating the SDCs oD, (n) is also presented. The SDCs Df(n) for f < 5 are

also tabulated. The SDCs @ (n) are useful in evaluating Racah coefficients afzD

and Sp(2m) by using the Schur—Weyl duality relation between Brauer algebras and the
corresponding orthogonal or sympletic groups, which will be discussed in our next paper.
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