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Abstract. Irreducible representations of Brauer algebras are discussed in the non-standard
basis. A method for evaluating subduction coefficients (SDCs), i.e. the transformation
coefficients between standard and non-standard bases of Brauer algebras, is outlined. Non-
trivial SDCs ofDf (n) for f 6 5 are derived. Racah coefficients of O(n) andSp(2m) can be
derived from subduction coefficients of Brauer algebrasDf (n) by using the Schur–Weyl duality
relation betweenDf (n) and O(n) or Sp(2m).

1. Introduction

Brauer algebras [1, 2]Df (n), which are similar to the group algebra of the symmetric
groupSf related to the decomposition off -rank tensors of the general linear groupGL(n),
are the centralizer algebras of the orthogonal group O(n) or the sympletic groupSp(2m)

whenn = −2m. More precisely, ifG is the orthogonal group O(n) or the sympletic group
Sp(2m), the corresponding centralizer algebraBf (G) are quotients of Brauer algebrasDf (n)

andDf (−2m), respectively [2, 3]. Hence, the duality relation betweenDf (n) and O(n) or
Sp(2m) is the same as the Schur–Weyl duality relation betweenSf andGL(n). Recently,
irreducible representations ofDf (n) in the standard basis, i.e. the basis adapted to the
chain Df (n) ⊃ Df −1(n) ⊃ · · · ⊃ D2(n), have been constructed by using the induced
representation and the linear equation method [4], and more elaborately by Leduc and Ram
using the so-called ribbon Hopf algebra approach [5].

On the other hand, Racah coefficients of classical Lie groups are of importance in many
physical problems, which is apparent from the work of Kramer [6], Moshinsky and Chacón
[7], Hecht [8], Le Blanc and Hecht [9], Ališauskas [10], Juddet al [11], and so on.

In this series of papers, we shall use the Schur–Weyl duality relation betweenDf (n)

and O(n) or Sp(2m) to derive Racah coefficients of O(n) and Sp(2m) from subduction
coefficients ofDf (n). This group-algebraic approach for evaluating Racah coefficients is
similar to that used by Kramer [12] and Chenet al [13] to derive Racah coefficients of the
unitary groupU(n) from subduction coefficients of the symmetric groupSf .

In section 2 we will briefly review the irreducible representations of Brauer algebra
Df (n) in the standard basis. Then the non-standard basis adapted to the chainDf (n) ⊃
Df1(n) × Df2(n) is expanded in terms of the standard ones. The expansion coefficients
are called the subduction coefficients (SDCs), or the transformation coefficients between
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the standard and non-standard bases ofDf (n). In section 3, we will present an effective
procedure for evaluating these SDCs. SDC tables ofDf (n) for f 6 5 will be given in
section 4, which are important in deriving Racah coefficients of O(n) andSp(2m).

2. Brauer algebra Df (n) in the non-standard basis

Df (n) is defined algebraically by 2f −2 generators{g1, g2, . . . , gf −1, e1, e2, . . . , ef −1} with
the following relations:

gigi+1gi = gi+1gigi+1

gigj = gjgi |i − j | > 2

eigi = ei

eigi−1ei = ei .

(1a)

Using the above-defined relations, we can obtain the following relations which are also
useful for our purposes:

eiej = ej ei |i − j | > 2

e2
i = nei

(gi − 1)2(gi + 1) = 0.

(1b)

It can be easily seen that{g1, g2, . . . , gf −1} generate a subalgebraSf , i.e. Df (n) ⊃ Sf . In
the following, we always assume thatn is an integer withn > f − 1. In this caseDf (n)

is semisimple. Irreducible representations ofDf (n) can be denoted by a Young diagram
with f, f − 2, f − 4, . . . , 1 or 0 boxes. An irrep ofDf (n) with f − 2k boxes is denoted
as [λ]f −2k. The branching rule ofDf (n) ↓ Df −1(n) is

[λ]f −2k = ⊕[µ]↔[λ] [µ] (2)

where [µ] runs through all diagrams obtained by removing or (if [λ] contains less thanf
boxes) adding a box to [λ]. Hence, the basis vectors ofDf (n) in the standard basis can be
denoted by ∣∣∣∣∣∣∣∣∣∣

[λ]f −2k Cf (n)

[µ] Cf −1(n)
...

...

[ρ] Cf −p+1(n)

[ν]f −p Cf −p(n)

 ≡

∣∣∣∣∣∣∣∣∣∣

[λ]f −2k

[µ]
...

[ρ]
Y

[ν]
M

 (3)

where [ν] is identical to the same irrep ofSf −p, Y
[ν]
M is a standard Young tableau, andM

can be understood either as the Yamanouchi symbols or the indices of the basis vectors in
the so-called decreasing page order of the Yamanouchi symbols. Procedures for evaluating
matrix elements ofgi , andei with i = 1, 2, . . . , f −1 in the standard basis (3) have already
been given in [4] and [5]. It is obvious that (3) is identical to the standard basis vectors of
Sf when k = 0. In [4] explicit expressions for matrix representations ofgi and ei in the
standard basis were given forf 6 5. Higher-dimensional results can also be derived by
using the method given in [4] or by using Leduc and Ram’s formula in [5].

An irrep of Df (n) is reducible with respect to its subalgebraDf1(n) × Df2(n) with
f1 + f2 = f . The process of the reduction is denoted by

[λ]f −2k ↓ Df1(n) × Df2(n) =
∑
λ1λ2

{λ1λ2λ}([λ1], [λ2]). (4)
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We call this orthogonal subduced basisDf (n) ⊃ Df1(n) × Df2(n) the non-standard basis of
Df (n). The basis vectors of (4) are denoted by∣∣∣∣[λ]f −2k

τ [λ1] [λ2]
ρ1 ρ2

〉
(5)

where [λi ]ρi , i = 1, 2, can be understood as labels for the standard basis ofDf1(n), and
Df2(n), respectively, given by (3),τ = 1, 2, . . . , {λ1λ2λ} is the multiplicity label needed in
the reduction (4).

In order to determine matrix representations ofDf (n) in the non-standard basis (5), we
can expand the non-standard basis in terms of the standard ones given by (3):∣∣∣∣[λ]f −2k

τ [λ1] [λ2]
ρ1 ρ2

〉
=

∑
ρ

∣∣∣∣ [λ]f −2k

ρ

〉 〈
[λ]f −2k

ρ

∣∣∣∣ τ [λ1] [λ2]
ρ1 ρ2

〉
. (6)

The expansion coefficient is called the [λ]f −2k ↓ [λ1] × [λ2] SDC, or the transformation
coefficient between the standard and non-standard bases ofDf (n). The SDCs satisfy the
following unitarity conditions:∑

λ2ρ2τ

〈
[λ]f −2k

ρ

∣∣∣∣ τ [λ1] [λ2]
ρ1 ρ2

〉 〈
[λ]f −2k

ρ ′

∣∣∣∣ τ [λ1] [λ2]
ρ1 ρ2

〉
= δρρ ′ (7a)

∑
ρ

〈
[λ]f −2k

ρ

∣∣∣∣ τ [λ1] [λ2]
ρ1 ρ2

〉 〈
[λ]f −2k

ρ

∣∣∣∣ τ ′[λ1] [λ′
2]

ρ1 ρ ′
2

〉
= δλ2λ

′
2
δρ2ρ

′
2
δττ ′ . (7b)

Once the SDCs are determined, the matrix elementQ ∈ Df (n) in the non-standard basis
can easily be obtained with the results of those in the standard basis given in [4] and [5].

3. Evaluation of the SDCs

In [14, 15] we have already justified that the so-called linear equation method is effective
in deriving SDCs as well as induction coefficients (IDCs) of Hecke algebras. This method
can also be used to derive SDCs ofDf (n).

Firstly, we assume that{g1, g2, . . . , gf1−1, e1, e2, . . . , ef1−1}, and{gf1+1, gf1+2, . . . , gf −1,
ef1+1, ef1+2, . . . , ef −1} are the generators ofDf1(n), andDf2(n), respectively.

By applying Qi = gi or ei with i = 1, 2, . . . , f1 − 1 and Qj = gj or ej with
j = f1 + 1, f1 + 2, . . . , f − 1 to (6), and then multiplying the results from the left with〈

[λ]f −2k

ρ

∣∣∣∣
we get two sets of linear equations∑
ρ ′

1

(Qi)ρ ′
1ρ1

〈
[λ]f −2k

ρ

∣∣∣∣ τ [λ1] [λ2]
ρ ′

1 ρ2

〉
=

∑
ρ ′

(Qi)ρρ ′

〈
[λ]f −2k

ρ ′

∣∣∣∣ τ [λ1] [λ2]
ρ1 ρ2

〉
(8a)

∑
ρ ′

2

(Qj−f1)ρ ′
2ρ2

〈
[λ]f −2k

ρ

∣∣∣∣ τ [λ1] [λ2]
ρ1 ρ ′

2

〉
=

∑
ρ ′

(Qj )ρρ ′

〈
[λ]f −2k

ρ ′

∣∣∣∣ τ [λ1] [λ2]
ρ1 ρ2

〉
(8b)

where (Qk)ρρ ′ are matrix elements ofQk in the corresponding standard basis. Linear
relations or a part of the so-called intertwining relations among SDCs given in (8a) and (8b)
together with the unitarity condition (7) are sufficient in solving these SDCs. Using these
relations, we can obtain all SDCs for the given irreps [λ], [λ1] and [λ2] when [λ] ↓ [λ1]×[λ2]
is multiplicity-free. In the multiplicity case, (8) gives linearly independent relations for the
fixed multiplicity label. These relations are also sufficient in solving the SDCs with the fixed
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multiplicity label. However, the same relations hold for any other multiplicity labels. In
order to resolve the multiplicity ambiguity, the SDCs with different multiplicity labels can
be chosen to be orthogonal to each other. In this case the solution to the SDCs is not unique
and depends on the phase convention. For example, SDCs ofD6(n) ↓ D3(n) × D3(n) for
the reduction [321]↓ [21]× [21] have already been given in [14] withq = 1 because SDCs
for irreps ofDf (n) with exactlyf boxes are identical to those of symmetric groupsSf . In
this paper, we will only derive SDCs ofDf (n) for the irreps withk 6= 0 andf 6 5 because
k = 0 SDCs are the same as those ofSf , which aren-independent and have already been
tabulated in [13]. In the following, we give an example to show how this method works.

Example. Derive SDC

〈
[2]
ρ

∣∣∣∣ [1] [λ2]
ρ2

〉
of D4(n) ↓ D1 × D3, where [λ2] = [1], [21], or

[3].
First, we rewrite (6) for these cases explicitly as∣∣∣∣[2]

[1] [1]
[0]

〉
=

6∑
i=1

ai |i〉
∣∣∣∣[2]

[1] [1]
[2]

〉
=

6∑
i=1

bi |i〉∣∣∣∣[2]
[1] [1]

[12]

〉
=

6∑
i=1

ci |i〉
∣∣∣∣[2]

[1] [1]
[3]

〉
=

6∑
i=1

di |i〉∣∣∣∣[2]
[1] [1]

[21]1

〉
=

6∑
i=1

fi |i〉
∣∣∣∣[2]

[1] [1]
[21]2

〉
=

6∑
i=1

hi |i〉

(9)

where

|1〉 =
∣∣∣∣ [2]
[3]

〉
|2〉 =

∣∣∣∣ [2]
[21]1

〉
|3〉 =

∣∣∣∣ [2]
[21]2

〉
|4〉 =

∣∣∣∣∣ [2]
[1]
[2]

〉
|5〉 =

∣∣∣∣∣ [2]
[1]
[12]

〉
|6〉 =

∣∣∣∣∣ [2]
[1]
[0]

〉 (10)

andai, bi, . . . , hi are the corresponding SDCs.

Table 1. D3 ⊃ D1 × D2.

D3\D1 × D2 [1] [0] [1] [2] [1] [1 2]

[1] [0] − 1
n

−
√

(n+2)(n−1)

2n2

√
n−1
2n

[1] [2]
√

(n+2)(n−1)

2n2
n−2
2n

√
n+2
4n

[1] [12]
√

n−1
2n

−
√

n+2
4n

− 1
2

Table 2. D4 ⊃ D2 × D2.

D4\D2 × D2 [2] [2] [12] [12] [0] [0]

[0] [1] [2] 1
[0] [1] [12] 1
[0] [1] [0] 1
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Table 3. D4 ⊃ D2 × D2.

D4\D2 × D2 [12] [2] [12] [12] [0] [2]

[2] [21]2

√
n−2

2(n−1)

√
n

2(n−1)

[2] [1] [12] −
√

n
2(n−1)

√
n−2

2(n−1)

[2] [1] [0] 1

D4\D2 × D2 [2] [2] [2] [1 2] [2] [0]

[2] [3]
√

n−2
3(n+2)

√
n+4

3(n+2)

√
n+4

3(n+2)

[2] [21]1

√
n+4

6(n−1)

√
n−2

6(n−1)
−

√
2(n−2)
3(n−1)

[2] [1] [2]
√

(n+4)(n−2)
2(n+2)(n−1)

−
√

n2

2(n+2)(n−1)

√
2

(n+2)(n−1)

D4\D2 × D2 [2] [12] [2] [2] [0] [1 2]

[12] [1] [2]
√

n−2
2(n−1)

−
√

n
2(n−1)

[12] [21]1

√
n

2(n−1)

√
n−2

2(n−1)

[12] [1] [0] 1

D4\D2 × D2 [12] [12] [12] [2] [12] [0]

[12] [13] −
√

1
3 −

√
n+2
3n

√
n−2
3n

[12] [21]2

√
n+2

6(n−1)

√
(n−4)2

6n(n−1)

√
2(n2−4)
3n(n−1)

[12] [1] [12]
√

n−2
2(n−1)

−
√

(n2−4)
2n(n−1)

−
√

2
n(n−1)

Applying g2, e2 to (9), and using (8a) and (8b) with the results of matrix representation
in the standard basis given in [14], we obtain

a5 =
√

n

n + 2
a4 a6 =

√
2

(n − 1)(n + 2)
a4

a1 = a2 = a3 = 0

(11a)

b6 = −
√

2(n + 2)(n − 1)

(n − 2)2
b4 b5 = −

√
n(n + 2)

(n − 2)2
b4 b3 =

√
3b2 (11b)

c6 = −
√

2(n − 1)

n + 2
c4 c5 = −

√
n

n + 2
c4 c1 = 0 c2 = −

√
3c3 (11c)

d6 = −
√

2(n + 2)(n − 1)

(n − 2)2
d4 d5 = −

√
n(n + 2)

(n − 2)2
d4 d3 =

√
3d2 (11d)

f6 = −
√

2(n + 2)(n − 1)

(n − 2)2
f4 f5 = −

√
n(n + 2)

(n − 2)2
f4 f3 =

√
3f2 (11e)
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Table 4. D5 ⊃ D2 × D3.

D5\D2 × D3 [0] [13] [12] [13] [2] [13] [12] [21]1 [12] [21]2

[13] [12] [1] [0] 1

[13] [12] [1] [2]
√

n−3
3(n−1)

[13] [12] [1] [12]
√

n−3
3(n−1)

√
(n−3)(n+2)

2(n−1)2 −
√

(n−3)(n+2)

6(n−1)2

[13] [12] [21]1

√
n(n−3)

3(n−1)(n−2)

[13] [12] [21]2

√
(n+2)(n−3)
9(n−1)(n−2)

−
√

(n−4)2(n−3)

6(n−2)(n−1)2 −
√

(n−3)(n+2)2

18(n−2)(n−1)2

[13] [12] [13] −
√

2(n−3)
9(n−2)

√
(n−3)(n+2)

3(n−2)(n−1)

√
(n−3)(n+2)
9(n−2)(n−1)

[13] [14]
√

1
6

√
n+2

3(n−1)

[13] [211]1
√

n
3(n−2)

[13] [211]2
√

(n+2)
9(n−2)

√
2

3(n−2)(n−1)

√
2(n−4)2

9(n−2)(n−1)

[13] [211]3 −
√

(n+2)
18(n−2)

√
4

3(n−2)(n−1)
−

√
(n−4)2

9(n−2)(n−1)

D5\D2 × D3 [2] [21]1 [2] [21]2 [12] [1] 12 [12] [1] 2 [12] [1] 0

[13] [12] [1] [0]

[13] [12] [1] [2] −
√

n
2(n−1)

√
n

6(n−1)

[13] [12] [1] [12] 1
n−1 −

√
n+2

n(n−1)2 −
√

2
n(n−1)

[13] [12] [21]1

√
n−2

2(n−1)

√
n2

6(n−1)(n−2)

[13] [12] [21]2

√
n+2

3(n−1)2(n−2)

√
(n−4)2

3n(n−2)(n−1)2

√
2(n2−4)
3n(n−1)

[13] [12] [13] −
√

2
3(n−1)(n−2)

−
√

2(n+2)
3n(n−1)(n−2)

√
n−2
3n

[13] [14]
√

n−3
2(n−1)

[13] [211]1 −
√

2(n−3)
3(n−2)

[13] [211]2 −
√

(n+2)(n−3)
3(n−1)(n−2)

√
n−3

3(n−2)(n−1)

[13] [211]3 −
√

(n+2)(n−3)
6(n−1)(n−2)

√
2(n−3)

3(n−2)(n−1)

h6 =
√

2(n − 1)

(n + 2)
h4 h5 = −

√
n

n + 2
h4 h2 = −

√
3h3. (11f)
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Table 5. D5 ⊃ D2 × D3.

D5\D2 × D3 [0] [3] [2] [3] [1 2] [3] [12] [21]1 [12] [21]2

[3] [2] [1] [0] 1

[3] [2] [1] [2]
√

(n−2)(n+1)(n+6)

3(n−1)(n+2)2

[3] [2] [1] [1 2] −
√

n+1
3(n−1)

√
n−2

6(n−1)

√
n−2

2(n−1)

[3] [2] [21]1

√
(n+1)(n+6)

9(n+2)(n−1)

[3] [2] [21]2

√
(n−2)(n+1)

3n(n−1)
−

√
(n−2)2

6n(n−1)

√
n

2(n−1)

[3] [2] [3]
√

2(n−2)(n+1)(n+6)

9(n+2)2(n+4)

[3] [4]
√

n(n−2)
6(n+2)(n+4)

[3] [31]1

√
n+6

18(n+2)

[3] [31]2

√
n+6

9(n+2)

[3] [31]3

√
n−2
3n

√
2(n+1)

3n

D5\D2 × D3 [2] [21]1 [2] [21]2 [2] [1]12 [2] [1]2 [2] [1]0

[3] [2] [1] [0]

[3] [2] [1] [2] −
√

n(n−2)(n+1)

6(n+2)(n−1)2 −
√

n(n−2)(n+1)

2(n+2)(n−1)2 −
√

n

(n+2)(n−1)2
n−2

(n+2)(n−1)
−

√
2

(n+2)(n−1)

[3] [2] [1] [1 2]

[3] [2] [21]1 −
√

n(n+1)

18(n−1)2
n−2
n−1

√
n+1
6n

√
n−2

3n(n−1)2

√
n−2

3(n+2)(n−1)2

√
2(n−2)
3(n−1)

[3] [2] [21]2

[3] [2] [3] −
√

n(n−2)(n+1)
9(n+2)(n−1)(n+4)

√
(n−2)(n+1)(n+4)

3n(n+2)(n−1)

√
2(n+4)

3n(n+2)(n−1)

√
2(n−2)2

3(n+2)2(n−1)(n+4)
−

√
n+4

3(n+2)

[3] [4]
√

(n−2)(n+6)
3(n−1)(n+4)

√
n(n+1)(n+6)

2(n−1)(n+4)(n+2)

[3] [31]1

√
n

9(n−1)

√
4

3n(n−1)
−

√
2(n−2)(n+1)

3n(n−1)
−

√
(n−2)(n+1)

6(n−1)(n+2)

[3] [31]2

√
2n

9(n−1)
−

√
2

3n(n−1)

√
(n−2)(n+1)

3n(n−1)
−

√
(n−2)(n+1)

3(n−1)(n+2)

[3] [31]3

Applying g3, e3 to thedi equation in (9), we get

d2 =
√

n + 2

3(n − 2)
d4 d1 =

√
2(n − 1)

3(n + 4)
d4. (12a)
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Table 6. D5 ⊃ D1 × D4.

D5\D1 × D4 [1] [12][1]0 [1] [12][1]12 [1][12][1]2 [1] [12][21]1 [1] [12][21]2

[13] [12] [1] [2]
√

(n−1)(n+2)

2n2

√
n+2

4n(n−1)2
n−2

2n(n−1)

√
n−2

4n(n−1)2

√
(n+2)2

12n(n−2)(n−1)2

[13] [12] [1] [12]
√

n−1
2n

− 1
2(n−1)

−
√

n+2
4n(n−1)2 −

√
n+2

4(n−2)(n−1)2 −
√

n+2
12(n−2)(n−1)2

[13] [12] [1] [0] − 1
n

√
1

2n(n−1)
−

√
n+2

2n2(n−1)
−

√
n+2

2n(n−2)(n−1)

√
n+2

6n(n−1)(n−2)

[13] [12] [21]1 −
√

n2−4
2(n−1)

√
n(n−2)

2(n−1)
− 1

2(n−1)(n−2)
− 2n−5

2
√

3(n−2)(n−1)

[13] [12] [21]2 −
√

n2−4
2
√

3(n−1)

√
3n(n−2)
2(n−1)

−
√

3
2(n−1)(n−2)

− 2n−5
6(n−2)(n−1)

[13] [12] [13]
√

2(n−2)
3(n−1)

−
√

2(n+2)

9(n−2)2(n−1)

[13] [211]1
√

(n−1)(n−3)
2(n−2)

−
√

(n−1)(n−3)

2
√

3(n−2)

[13] [211]2
√

3(n−1)(n−3)
2(n−2)

√
(n−1)(n−3)

6(n−2)

[13] [211]3
√

8(n−1)(n−3)
3(n−2)

[13] [14]

D5\D1 × D4 [1] [12][13] [1] [14] [1][211]1 [1] [211]2 [1] [211]3

[13] [12] [1] [2] −
√

n+2
6n(n−1)(n−2)

√
(n−3)(n+2)

8n(n−1)
−

√
(n−3)(n−2)

4n(n−1)
−

√
(n−3)(n+2)2

12n(n−1)(n−2)

√
(n−3)(n+2)2

24n(n−2)(n−1)

[13] [12] [1] [12]
√

1
6(n−1)(n−2)

−
√

n−3
8(n−1)

√
(n−3)(n+2)
4(n−1)(n−2)

√
(n−3)(n+2)

12(n−2)(n−1)
−

√
(n−3)(n+2)

24(n−2)(n−1)

[13] [12] [1] [0] − 1√
3n(n−2)

√
n−3
4n

√
(n−3)(n+2)

2n(n−2)
−

√
(n−3)(n+2)

6n(n−2)

√
(n−3)(n+2)

12n(n−2)

[13] [12] [21]1 −
√

n+2
6(n−1)(n−2)2

√
(n−3)(n+2)

8(n−1)(n−2)

√
n−3

4(n−1)(n−2)2
2n−5
n−2

√
n−3

12(n−1)
n+2
n−2

√
n−3

24(n−1)

[13] [12] [21]2

√
n+2

18(n−1)(n−2)2 −
√

(n−3)(n+2)
24(n−1)(n−2)

√
3(n−3)

4(n−1)(n−2)2 − 2n−5
n−2

√
n−3

36(n−1)
− n+2

n−2

√
n−3

72(n−1)

[13] [12] [13] − 1
3(n−2)

√
n−3

12(n−2)

√
2(n−3)(n+2)

3(n−2)

√
(n−3)(n+2)

6(n−2)

[13] [211]1
√

(n+2)(n−3)

6(n−2)2

√
n+2

8(n−2)
1

2(n−2)
− 1

2
√

3(n−2)
− 3n−10√

24(n−2)

[13] [211]2 −
√

(n+2)(n−3)

18(n−2)2 −
√

n+2
24(n−2)

√
3

2(n−2)
1

6(n−2)
3n−10√
72(n−2)

[13] [211]3
√

(n+2)(n−3)

36(n−2)2

√
n+2

48(n−2)

√
8

3(n−2)
− 3n−10

12(n−2)

[13] [14]
√

3(n−3)
4(n−2)

− 1
4

√
3(n+2)
16(n−2)

Using (11d), (12a) and the normalization condition in (7), we obtain

d4 = ξ

√
(n − 2)2(n + 4)

6(n − 1)(n + 2)2
. (12b)
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Table 7. D5 ⊃ D1 × D4.

D5\D1 × D4 [1] [2] [1]0 [1] [2] [1]12 [1] [2] [1]2 [1] [2] [3] [1] [2] [21]1

[3] [2] [1] [2]
√

(n−1)(n+2)

2n2

√
n+2

4n(n−1)2
(n−2)2

2n(n−1)(n+2)

√
(n−2)4

6n2(n−1)(n+4)(n+2)2

√
(n−2)3

12n2(n−1)2(n+2)

[3] [2] [1] [1 2]
√

n−1
2n

− 1
2(n−1)

− n−2
2(n−1)

√
n(n+2)

−
√

(n−2)2

6n(n+4)(n+2)(n−1)
−

√
n−2

12n(n−1)2

[3] [2] [1] [0] − 1
n

√
1

2n(n−1)
−

√
(n−2)2

2n2(n−1)(n+2)
−

√
(n−2)2

3n2(n+4)(n+2)
−

√
n−2

6n2(n−1)

[3] [2] [21]1 −
√

3n(n−2)

4(n−1)2 −
√

n2(n−2)

12(n−1)2(n+2)

√
(n−2)3

18n2(n+4)(n−1)(n+2)
− 2n−1

6n(n−1)

[3] [2] [21]2

√
n(n−2)

4(n−1)2 −
√

n2(n−2)

4(n−1)2(n+2)

√
(n−2)3

6n2(n+4)(n−1)(n+2)
− 2n−1

2
√

3n(n−1)

[3] [2] [3]
√

2n2(n+4)

3(n−1)(n+2)2
(n−2)2

3n(n+2)(n+4)
−

√
2(n+4)(n−2)

9n2(n−1)(n+2)

[3] [4]
√

3(n+1)(n+2)(n+6)

4n(n+4)2

[3] [31]1 −
√

(n2−4)(n+1)

36n2(n+4)

√
8(n2−1)

3n

[3] [31]2 −
√

(n2−4)(n+1)

18n2(n+4)
−

√
n2−1
6n

[3] [31]3 −
√

(n2−4)(n+1)

6n2(n+4)
−

√
n2−1

2
√

3n

D5\D1 × D4 [1] [2] [21]2 [1] [31]1 [1] [31]2 [1] [31]3 [1] [4]

[3] [2] [1] [2] −
√

n2−4
2n(n−1)

−
√

(n+1)(n−2)3

24n2(n−1)(n+2)
−

√
(n+1)(n−2)3

12n2(n−1)(n+2)

√
(n+1)(n2−4)

4n2(n−1)

√
(n+1)(n+6)(n−2)2

8n(n−1)(n+2)(n+4)

[3] [2] [1] [1 2]
√

n−2
4(n−1)2n

√
(n+1)(n−2)

24n(n−1)

√
(n+1)(n−2)

12n(n−1)
−

√
(n+1)(n−2)

4n(n−1)
−

√
(n+1)(n+6)
8(n+4)(n−1)

[3] [2] [1] [0] −
√

n−2
2n2(n−1)

−
√

(n+1)(n−2)

12n2

√
(n+1)(n−2)

6n2

√
(n+1)(n−2)

2n2 −
√

(n+1)(n+6)
4n(n+4)

[3] [2] [21]1 −
√

3
2n(n−1)

−
√

(n+1)(n−2)2

72n2(n−1)

√
(n+1)(2n−1)2

36n2(n−1)

√
3(n+1)

4n2(n−1)

√
(n+1)(n+6)(n−2)

24n(n−1)(n+4)

[3] [2] [21]2
1

2n(n−1)
−

√
(n+1)(n−2)2

24n2(n−1)

√
(n+1)(2n−1)2

12n2(n−1)
−

√
n+1

4n2(n−1)
−

√
(n+1)(n+6)(n−2)

8n(n−1)(n+4)

[3] [2] [3] −
√

(n+1)(n−2)3

36n2(n+2)(n+4)

√
2(n−2)(n+1)(n+4)

9n2(n+2)

√
(n−2)2(n+1)(n+6)

12n(n+2)(n+4)2

[3] [4]
√

3(n+6)(n−2)
16n(n+4)

n−2
4(n+4)

[3] [31]1
3n+2
12n

√
8

3n

√
(n−2)(n+6)

48n(n+4)

[3] [31]2 −
√

3(n2−1)

2n
3n+2
6
√

2n
− 1

6n

√
3

2n

√
(n−2)(n+6)

24n(n+4)

[3] [31]3

√
n2−1
2n

3n+2
2
√

6n
− 1

2
√

3n
− 1

2n

√
(n−2)(n+6)

8n(n+4)

Hence, all thedi are known. Similarly, using (11a) and the normalization condition for the
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Table 8. D5 ⊃ D3 × D2.

D5\D3 × D2 [1]0 [12] [1] 2 [12] [1] 12 [12] [21]1 [2] [21]2 [2]

[13] [12] [1] [0] 1
[13] [12] [1] [2] 1
[13] [12] [1] [12] 1

[13] [12] [21]1 −
√

n−1
2(n−2)

[13] [12] [21]2 −
√

n−1
2(n−2)

[13] [211]1
√

n−3
2(n−2)

[13] [211]2
√

n−3
2(n−2)

[13] [211]3
[13] [12] [13]
[13] [14]

D5\D3 × D2 [21]1 [12] [21]2 [12] [13] [2] [13] [12] [13] [0]

[13] [12] [1] [0]
[13] [12] [1] [2]
[13] [12] [1] [12]

[13] [12] [21]1

√
n−3

2(n−2)

[13] [12] [21]2

√
n−3

2(n−2)

[13] [211]1
√

n−1
2(n−2)

[13] [211]2
√

n−1
2(n−2)

[13] [211]3 −
√

(n−6)2

8n(n−2)
−

√
n+2

8(n−2)

√
3(n−3)(n+2)

4n(n−2)

[13] [12] [13]
√

(n−3)(n+2)
2n(n−2)

−
√

n−3
2(n−2)

−
√

3
n(n−2)

[13] [14]
√

3(n+2)
8n

√
3
8

√
n−3
4n

ai , we get

a4 = η

√
(n + 2)(n − 1)

2n2
(12c)

whereξ and η are overall phase factors which will be given in section 4. According to
our phase convention,ξ andη are all taken to be+1. Finally, applyingg3 ande3 to other
equations in (9), we derive all the SDCs of this case. The results are listed in table 10.

4. SDCs ofDf (n)

In this section, we list some SDC tables derived by using the method outlined in the above
section. Firstly, the following SDCs forDf +1(n) ⊃ Df (n) × D1(n) are trivial:〈

[λ]
ρ

∣∣∣∣[λ],
[λ1] [1]
ρ1

〉
= δρ,[λ1]ρ1. (13)

Secondly, all SDC tables of symmetric groupsSf given in [13] are also the SDCs of
Df (n) for the Df (n) irreps [λ]f −2k with k = 0. Hence, we will not re-tabulate them here.
Other non-trivial SDCs ofDf (n) derived by using our method are listed in tables 1–11.
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Table 9. D5 ⊃ D3 × D2.

D5\D3 × D2 [1]0 [2] [1]2 [2] [1]12 [2] [21]1 [2] [21]2 [2]

[3] [2] [1] [0] 1
[3] [2] [1] [2] 1
[3] [2] [1] [1 2] 1

[3] [2] [21]1

√
n+1
2n

[3] [2] [21]2

√
n+1
2n

[3] [31]2

√
n−1
2n

[3] [31]3

√
n−1
2n

[3] [31]1

[3] [2] [3]
[3] [4]

D5\D3 × D2 [21]1 [12] [21]2 [12] [3] [0] [3] [2] [3] [1 2]

[3] [2] [1] [0]
[3] [2] [1] [2]
[3] [2] [1] [1 2]

[3] [2] [21]1 −
√

n−1
2n

[3] [2] [21]2 −
√

n−1
2n

[3] [31]2

√
n+1
2n

[3] [31]3

√
n+1
2n

[3] [31]1 −
√

3(n−2)(n+1)

4n2

√
(n+2)(n+6)

8n2

√
n−2
8n

[3] [2] [3]
√

3(n+2)

n2(n+4)

√
(n−2)(n+1)(n+6)

2n2(n+4)
−

√
(n+1)(n+2)

2n(n+4)

[3] [4]
√

(n+1)(n+6)
4n(n+4)

√
3(n2−4)
8n(n+4)

√
3(n+6)
8(n+4)

Table 10. D4 ⊃ D1 × D3.

D4\D1 × D3 [1] [1]0 [1] [1]2 [1] [1]12 [1] [3] [1] [[21] 1 [1] [21]2

[2] [1]0
1
n

−
√

(n−2)2

2n2(n−1)(n+2)

1√
2n(n−1)

−
√

n+4
3(n+2)

√
n−2

6(n−1)

√
n−2

2(n−1)

[2] [1]2 −
√

(n−1)(n+2)

2n2
(n−2)2

2(n−1)n(n+2)

√
n+2

4n(n−1)2

√
(n−2)2(n+4)

6(n+2)2(n−1)
−

√
(n−2)3

12(n+2)(n−1)2 −
√

n2−4
2(n−1)

[2] [1]12 −
√

n−1
2n

−
√

(n−2)2

4n(n+2)(n−1)2 − 1
2(n−1)

−
√

n(n+4)
6(n+2)(n−1)

√
n(n−2)

12(n−1)2 −
√

n(n−2)
2(n−1)

[2] [3]
√

2(n+4)n2

3(n−1)(n+2)2
n−2

3(n+2)

√
2(n+4)(n−2)
9(n−1)(n+2)

[2] [21]1 −
√

(n−2)n2

12(n−1)2(n+2)

−√
3n(n−2)

4(n−1)2

√
(n−2)(n+4)

18(n−1)(n+2)
2n−1

6(n−1)

√
3

2(n−1)

[2] [21]2 −
√

(n−2)n2

12(n−1)2(n+2)

√
(n−2)n

4(n−1)2

√
(n−2)(n+4)
6(n−1)(n+2)

2n−1
(n−1)

− 1
2(n−1)

The phase convention used for the SDCs ofDf (n) is〈
[λ]
ρ

∣∣∣∣[λ],
[λ1] [λ2]
ρ1 ρ2

〉 ∣∣∣∣
ρ=min

> 0 (14)
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Table 11. D4 ⊃ D1 × D3.

D4\D1 × D3 [1] [1]0 [1] [1]2 [1] [1]12 [1] [13] [1] [[21] 1 [1] [21]2

[12] [1] 0 − 1
n

−
√

n+2
2n2(n−1)

1√
2n(n−1)

√
n−2
3n

√
n2−4

2n(n−1)
−

√
n2−4

6n(n−1)

[12] [1] 2

√
(n−1)(n+2)

2n2
n−2

2n(n−1)

√
n+2

4n(n−1)2

√
n2−4

6n(n−1)
−

√
(n−2)3

4n(n−1)2 −
√

(n2−4)(n+2)

12n(n−1)2

[12] [1] 12

√
n−1
2n

−
√

n(n+2)
2n(n−1)

− 1
2(n−1)

−
√

n−2
6(n−1)

√
n2−4

2(n−1)

√
n2−4

12(n−1)2

[12] [13]
√

2(n−2)
3(n−1)

1
3

√
2(n+2)
9(n−1)

[12] [21]1

√
(n−2)n

2(n−1)
−

√
3(n2−4

12(n−1)2

√
n+2

6(n−1)
1

2(n−1)
2n−5

2
√

3(n−1)

[12] [21]2

√
3n(n−2)
2(n−1)

√
(n2−4

12(n−1)2 −
√

n+2
18(n−1)

√
3

2(n−1)
− 2n−5

6(n−1)

whereρ = min means taking the indexρ as small as possible. The ordering of the indexρ

is specified as follows. In the reductionDf (n) ↓ Df −1(n) with irrep [λ] ↓ [µ], we always
regardρ = [µ̄]ρ ′, whereρ ′ represents other indices in order to label irreps ofDf −1(n), as
smallest if [µ̄] coincides with the same irrep ofSf . The same sub-ordering is then taken as
that for symmetric groups given by [13] and [14]. For example, the basis vectors ofD4(n)

irrep [2] given in (10) are expressed in this ordering. Once the absolute phase is fixed, the
relative phase among SDCs is determined uniquely by our linear equation method.

5. Conclusion

In this paper, the non-standard basis for Brauer algebrasDf (n) is discussed, and the method
for evaluating the SDCs ofDf (n) is also presented. The SDCs ofDf (n) for f 6 5 are
also tabulated. The SDCs ofDf (n) are useful in evaluating Racah coefficients of O(n)

and Sp(2m) by using the Schur–Weyl duality relation between Brauer algebras and the
corresponding orthogonal or sympletic groups, which will be discussed in our next paper.
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